We will reply to your message within an hour.
More
Mount valves to a single-station base or to a manifold, which allows a single pressure source for multiple valves, then add or remove valves as your needs change.
Mix and match valve styles on one manifold to meet your control needs. Mount multiple valves to a manifold to reduce piping requirements and create multiple actions from a single pressure input.
Often used to extend and then retract a cylinder at different speeds, these valves create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 5/2 valves, they actuate when voltage is applied to the electrical connection.
In the off position, these valves exhaust all air pressure, allowing the equipment to return to the neutral position. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Apply voltage to the electrical connection to actuate.
These valves close all ports in the off position to stop equipment in a locked position with air pressure holding it in place. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Apply voltage to the electrical connection to actuate.
These valves create one action, such as extending a cylinder. Apply voltage to the electrical connection to actuate. They're also known as 3/2 valves.
With two 3-way integrated solenoid valves, these electrically controlled valves direct airflow to end-of-arm tools that don’t require vacuum suction, such as pick-and-place grippers. Also known as 3/2 valves, each of the two solenoid valves directs air to a different port.
With two 2-way integrated solenoid valves, these electrically controlled valves direct airflow to venturi pumps, which generate the suction you need to run end-of-arm tools, such as vacuum cups.
Distribute air or fluid to multiple locations from a single supply source with these manifolds. They are also known as headers.
These manifolds have two separate sections inside, so you can run two different substances through them without worrying about them intermixing. Also known as headers.
Designed for ultra-clean environments, these manifolds are cleaned, dried, and vacuum sealed in plastic to prevent dirt and moisture from contaminating the inside. Use them to distribute air or fluid to multiple locations from a single supply source. Also known as headers.
Unlike other manifolds, which have an inlet on either end, these have one inlet on the opposite side from the outlets. This design allows air or fluid to follow a straight path, improving flow through your system. Also known as headers.
When you’re short on vertical space, these manifolds are a good fit—they have outlets on the side instead of on top, so they have a lower profile than rectangular manifolds. Use them to distribute air or fluid to five locations from a single supply source.
A great solution when space is at a premium, these manifolds are less than an inch in height, yet allow you to supply up to 12 lines from one distribution point.
Mount these manifolds on the end of a hose line to distribute air, water, or hydraulic fluid to three locations from a single supply source.
With outlets on the side instead of on top, these manifolds have a lower profile than rectangular manifolds and fit well in cramped spaces. Use them to distribute air or fluid to three locations from a single supply source.
Use these manifolds with molding equipment to circulate hot and cold water through your line. They have a red side for hot water and a blue side for cold water.
Use these junction blocks to organize and separate multiple lines in your system. They have threaded holes that allow air or fluid to flow straight through the block.
These junction blocks have threaded holes that allow air or fluid to flow at a 90° angle through the block. Use them to organize and separate multiple lines in your system.
Often attached to differential pressure gauges to measure liquid level in tanks, these manifolds have two isolation valves with a pressure-equalizing valve between them. To isolate your differential pressure gauge for maintenance or calibration, shut off flow on both sides and equalize pressure in the manifold. They are rated for at least 6,000 psi. Use with water, oil, air, and inert gas.
Also known as block and bleed valves, these have two vent ports to isolate pressure gauges, switches, and other components in high-pressure systems for maintenance, calibration, and sampling without interrupting the process. They are rated for up to 10,000 psi. Use with water, oil, air, and inert gas. Turn the handle to adjust flow in small increments for metering, sampling, and other applications requiring fine flow control.
With a gauge port on each side of these valves, you can install two different pieces of instrumentation equipment to simultaneously monitor multiple media properties without interrupting flow. Use with water, oil, air, and inert gas. Turn the handle to adjust flow in small increments for metering, sampling, and other applications requiring fine flow control.
Also known as block and bleed valves, these have a vent port that allows you to remove instrumentation equipment attached to the valve without depressurizing your line. Turn the handle to shut off flow and remove the vent port plug to drain liquid trapped in the valve. Use them with water, oil, air, and inert gas. These valves adjust flow in small increments for metering, sampling, and other applications requiring fine flow control.
Often used for emission analysis and gas processing, these valves attach to each other horizontally to create one centralized manifold for servicing multiple process lines. All are rated for use with water, oil, air, and inert gas. They operate on electricity to automatically divert flow between ports.
Control flow with an electrical signal.
Push or pull the toggle handle to control flow.
Set a specific pressure and these valves will maintain it.
Turn the knob to gradually adjust the amount of flow.
Also known as check valves, these open to allow flow in one direction and close when flow stops or reverses.
Control the direction of flow or stop flow altogether.
Direct flow manually with a lever.
Direct flow with an electronic signal.
These valves maintain a consistent pressure in a system when input pressure varies.
Set a specific pressure and these valves will maintain it by diverting excess fluid to a tank.
Deliver an equal amount of oil to multiple lubrication points at once.
A sealed design prevents contamination in dirty and dusty environments.
For use in clean environments, these manifolds have multiple air vents that keep pressure balanced.
Monitor refrigerant pressure on an LCD when servicing air conditioning systems.
Monitor refrigerant pressure with analog gauges when servicing air conditioning systems.
Connect up to four rams and a gauge to a pump. Ram connections have flow-adjustment valves to adjust ram speed, or shut it off to temporarily hold a load.
Connect up to five rams to a single pump.
Divert compressed air from a single line to two respirators.