We will reply to your message within an hour.
These solenoid valves operate on electricity to automatically start and stop flow. The actuator is directly mounted to the valve body to minimize movement and reduce wear.
These top-of-the-line valves are comparable to Asco Red Hat 8210G Series and Parker Gold Ring 23C Series.
Control flow in high-pressure lines in tight spots—these valves have the highest pressure ratings of our compact valves.
Comparable to Asco Red Hat 8210G Series and Parker Gold Ring 23C Series, these valves meet the highest quality standards.
Lower profile and available in smaller connection sizes than standard valves, these fit in tight spots.
Less than half the size of our other compact valves, these have small pipe connections for miniature lines.
Insert tubing into the fittings on these valves—no heat, solder, or flux required.
To fit in tight spots, these valves have a slimmer body than standard valves with an exhaust port.
Designed for controlling single-acting, spring-return air cylinders, these valves have a third threaded port to exhaust media.
Turn the knob to adjust how much these valves will open or close when actuated. They are often used in irrigation and landscaping applications.
These valves are rated for use in hazardous locations with flammable gas and combustible dust.
Avoid pressure surges and system shocks that can damage piping by installing these valves that open and close slowly.
Designed to withstand the high temperatures and pressures in steam service applications.
With a plastic body and a fluoroelastomer seal, these valves can stand up to aggressive and corrosive solutions in chemical-processing applications.
For applications sensitive to contamination, these valves stop flow without contacting the process media by pressing down on the outside of tubing.
Sturdy internal components resist wear for a long service life in applications with frequent cycling.
Use with coolant and detergent such as ethylene glycol or soap solutions.
A built-in strainer traps debris and allows you to replace the screen without disconnecting your pipeline.
Often used to control single-acting, spring-return air cylinders, these valves have a third threaded port to exhaust media.
Reduce your pipeline footprint with these low-profile valves that are about half the size of standard valves for coolant.
To change the flow rate of antifreeze and cleaning solutions, use the adjustment screw or knob to manually set how much these valves will open when actuated.
Safe for automated on/off control in drinking-water systems, these valves meet NSF/ANSI Standard 61.
These valves have threaded NPT connections.
Install these valves in gas pipelines to automatically control the flow of natural gas, propane, and butane to equipment.
Built to withstand the extreme cold of liquid nitrogen and liquid oxygen, these valves are cleaned and bagged for high-purity applications.
Supply fuel oil to boilers, furnaces, and other equipment.
Also known as proportional solenoid valves, these adjust and regulate flow based on the intensity of the electrical signal into the valve.
Available in smaller pipe sizes than other solenoid flow-adjustment valves, these are often used with gas chromatography equipment and analytical instrumentation. They adjust and regulate flow based on the intensity of the electrical signal into the valve. They're often integrated into PLC systems for automatic control over the valve position based on system conditions.
Lower profile than other solenoid diverting valves and available in smaller pipe sizes, these valves are often used to automatically divert flow between ports in tight spots. Use them with water, oil, air, and inert gas. All operate on electricity.
These valves operate on electricity to automatically divert flow between ports. Use with water, oil, air, and inert gas.
Often used for emission analysis and gas processing, these valves attach to each other horizontally to create one centralized manifold for servicing multiple process lines. All are rated for use with water, oil, air, and inert gas. They operate on electricity to automatically divert flow between ports.
Often used for chemical analysis and other laboratory testing, these valves have a PTFE seal and body to withstand aggressive and corrosive solutions. They operate on electricity to automatically divert flow between ports.
With a durable bronze body, these float valves can be used with water and hydraulic fluid.
Made of stainless steel, these float valves have excellent corrosion resistance even when exposed to chemicals.
Often used to extend and then retract a cylinder at different speeds, these valves create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 5/2 valves, they actuate when voltage is applied to the electrical connection.
Run through equipment cycles up to 30% faster than with standard valves. These valves shift between flow positions in 1.7 ms. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port.
These valves close all ports in the off position to stop equipment in a locked position with air pressure holding it in place. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Apply voltage to the electrical connection to actuate.
In the off position, these valves exhaust all air pressure, allowing the equipment to return to the neutral position. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Apply voltage to the electrical connection to actuate.
Also known as 4-way and 5/2 valves, these valves create two actions, such as extending and then retracting a double-acting cylinder. Apply voltage to the electrical connection to actuate.
These valves create one action, such as extending a cylinder. Apply voltage to the electrical connection to actuate. They're also known as 3/2 valves.
Run through equipment cycles up to 30% faster than with standard valves. Also known as 3/2 valves, they create one action, such as extending a cylinder. Apply voltage to the electrical connection to actuate.
Also known as 3/3 valves, these valves close all ports in the off position to stop equipment in a locked position with air pressure holding it in place. They're often used for vacuum suction and release applications and intermediate cylinder stops.
Create two actions at the same time, such as extending two single-acting cylinders at once. Apply voltage to the electrical connection to actuate. Also known as pressure center valves.
Use a single valve to create motion and control the speed of that motion.
Ceramic plates form a longer-lasting seal against oil and dust than rubber seals that deteriorate over time. These valves withstand use in corrosive, dusty, and dirty environments such as foundries, paper mills, and steel plants. Apply voltage to the electrical connection to actuate.
With two 3-way integrated solenoid valves, these electrically controlled valves direct airflow to end-of-arm tools that don’t require vacuum suction, such as pick-and-place grippers. Also known as 3/2 valves, each of the two solenoid valves directs air to a different port.
Rated IP69K, these valves withstand high-pressure, high-temperature washdowns. Their smooth design keeps out dust, dirt, and contaminants, making them easier to keep clean. Apply voltage to the electrical connection to actuate.
These valves are rated for environments where hazardous material is present. They actuate when voltage is applied to the electrical connection.
Mix and match valve styles on one manifold to meet your control needs. Mount multiple valves to a manifold to reduce piping requirements and create multiple actions from a single pressure input.
Mount valves to a single-station base or to a manifold, which allows a single pressure source for multiple valves, then add or remove valves as your needs change.
Also known as solenoid valves, these valves are operated by an electrical signal to turn airflow on or off.
With two 2-way integrated solenoid valves, these electrically controlled valves direct airflow to venturi pumps, which generate the suction you need to run end-of-arm tools, such as vacuum cups.
Designed for use in dust-collection systems, these diaphragm valves periodically burst air to knock debris from filters.
Convert a continuous stream of air into a series of quick pulses, reducing air consumption by up to 50% and improving performance in air-blowing applications such as cleaning and drying.
Also known as Monday-morning valves, these valves slowly introduce pressure to reduce surge damage during start-up.
Adjust the flow rate as needed.
A tapered needle gives you more precise control than standard flow-adjustment inline hydraulic valves.
Maintain a fixed flow rate even if pressure changes in the system.
Set your flow rate and then adjust it as necessary; these valves maintain flow rate despite pressure changes in the system.
Turn the handle to direct flow between ports.
When input pressure varies, use these valves to maintain a consistent pressure.
Also known as check valves, these open to allow flow in one direction and close when flow stops or reverses.
Start and stop flow with a quarter turn of the handle. Also known as ball valves.
Lock the handle using a padlock.
Direct flow with an electronic signal.
Direct flow manually with a lever.
These valves maintain a consistent pressure in a system when input pressure varies.
Set a specific pressure and these valves will maintain it by diverting excess fluid to a tank.
Control flow with an electrical signal.
Push or pull the toggle handle to control flow.
Control the direction of flow or stop flow altogether.
Turn the knob to gradually adjust the amount of flow.
Set a specific pressure and these valves will maintain it.
The pressure setting on these valves cannot be adjusted while they are installed.
To set the pressure, unscrew the cap and turn the adjusting screw.
An external nut lets you adjust the pressure without disassembling the valve.
Design a valve specifically for your process media and set pressure. Choose from a valve for air, inert gas, water, hydraulic oil, fuel oil, gasoline, or diesel fuel and a set pressure.
Add air and hydraulic fluid to high-pressure struts, tanks, and hydraulic accumulators—these fill valves withstand pressures up to 5,000 psi.
Use these couplings at pressures up to 5,000 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with International Standard ISO B-shape plugs and sockets.
Use these couplings at pressures up to 10,000 psi. The plug and socket thread together to form a stronger connection than other quick-disconnect couplings. They are compatible with High-Pressure Thread-Lock-shape plugs and sockets.
Use these couplings at pressures up to 5,000 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with International Standard ISO A-shape plugs and sockets.
Ideal for lines with rapid changes in pressure and flow, these couplings have threads that lock them together. They connect more securely than push-to-connect couplings, whose bearings wear out in high-impulse conditions.
Made of brass with a steel wing nut, these couplings are tough enough to handle occasional drops to concrete and frequent connections on dump truck, oil rigs, and other heavy duty equipment. Compared to push-to-connect couplings, these are threaded, so they're easier to connect when there's pressure in your line.
Use these couplings at pressures up to 10,000 psi. Also known as flush-face couplings, the plugs and sockets have a flat face, which allows them to mate close together, reducing fluid loss when connecting and disconnecting the line. They are compatible with High-Pressure Minimal-Spill-shape plugs and sockets.
Use these couplings at pressures up to 3,000 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with Pioneer-shape plugs and sockets.
Add quick connection points for mechanical gauges and other diagnostic equipment to your line. These couplings are also known as test ports and diagnostic couplings.
Use these couplings at pressures up to 6,500 psi. They consist of a plug and socket that connect and disconnect quickly. Use them if you need frequent access to a line. They are compatible with Snap-Tite H-Shape plugs and sockets.
Use these couplings at pressures up to 7,200 psi. Also known as flush-face couplings, the plugs and sockets have a flat face, which allows them to mate close together, reducing fluid loss when connecting and disconnecting the line. They are compatible with International Standard ISO Minimal-Spill-shape plugs and sockets.
To minimize fluid loss when connecting and disconnecting your line, these couplings have flat faces for a close fit and shut-off valves to stop the flow—they meet ISO 16028, which is an international standard for hose couplings.
Minimize chemical and petroleum spills during accidental disconnects, such as a driver pulling away during loading. These couplings have a shut-off valve on each half to stop flow when they’re separated.
Quickly connect and disconnect hose lines used with a variety of chemicals, from adhesives to isopropyl alcohol and ink. Any part of these couplings that contacts fluid is made from 316 stainless steel, C-276 Hastelloy, PTFE, or fluoroelastomer to withstand the chemicals in your line.
Couplings are metal, which has better durability than plastic cam-and-groove hose couplings. Also known as dry disconnects and double shut-off couplings, they have a shut-off valve in the plug and the socket for minimal fluid loss when disconnecting your hose line.