We will reply to your message within an hour.
More
Use these valves in general purpose applications such as those with water, oil, air, and inert gas.
Extend your reach in hard-to-access areas—turn these valves on and off using a square ratchet to grasp the hole at the end of the handle. Use with water, oil, air, and inert gas.
An easy-to-read flow-indicating handle shows the percentage the valve is open. These valves are for use with water, oil, inert gas, and steam.
For installation through thick insulation, these valves have an extra-long stem.
A built-in strainer traps debris and allows you to replace the screen without disconnecting your pipeline.
Turn the flow to any garden hose on and off. These valves have garden hose threads, which are a standard size, so they're universally compatible with all standard garden hoses.
These valves handle twice the pressure of other compact valves. Install them in tight spots, such as where pipelines are crowded together. Use with water, oil, air, and inert gas.
With 10-32 UNF threads and a body less than 3/4” long, these valves are often used to control flow in miniature pipelines. They’re rated for use with water, oil, air, and inert gas.
These valves are rated for at least three times the pressure of standard threaded valves. Use with water, oil, air, inert gas, and steam.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components. Use with water, oil, air, inert gas, and steam.
Control the flow of your line while it’s protected behind an instrument panel. These valves have threads and a hex nut below the handle, so it sticks out of your panel for access. They’re for use with water, oil, air, and inert gas.
Often used in high-purity applications, such as oxygen service, these valves come cleaned and bagged. Use with water, oil, inert gas, and steam.
For fast installation and removal from pipelines, these valves have a union fitting that disassembles into multiple pieces. They’re for use with water, oil, air, inert gas, and steam.
Use these valves with water, air, and inert gas.
Fit these short and slim valves in control boxes, panels, and other tight spots. Made of plastic, they won’t pit or corrode on the inside like metal valves, and they’re lighter in weight for easy handling.
Also known as wafer ball valves, these combine the slim body of a butterfly valve with the high flow rates of a flanged ball valve. Bolt these valves to ANSI flanges—they meet ASME standards for dimensions, material, and pressure-temperature rating. Use with water, oil, air, steam and inert gas such as helium.
For extra gripping power and a strong seal, the Yor-Lok fittings on these valves have two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves are for use with water, oil, air, and inert gas.
Easily access the handle of these valves while protecting your line behind an instrument panel. Threads and a hex nut below the handle allow you to install these valves in instrument panels. For extra gripping power and a strong seal, they have Yor-Lok fittings with two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings.
Clean and maintain these valves without removing welded connections. They have a three-piece bolted body that disassembles inline for easy access to internal components. Use with water, oil, air, inert gas, and steam.
Often used for oxygen service and other high-purity applications, these valves come cleaned and bagged. Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection. For easy maintenance, they have a three-piece bolted body that disassembles inline so you can access internal components without removing welded connections.
For a leak-tight connection that doesn’t require heat or soldering, these valves have press-connect fittings that crimp to metal tubing with a press-connect crimping tool.
Plastic provides a lightweight and economical alternative to metal. All valves have barbs that grip onto tubing for a secure hold. They’re for use with water, oil, air, and inert gas.
These valves have barbs that grip onto tubing, providing a secure hold. Because they’re made of metal, they are more durable than plastic valves and withstand higher temperatures.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. They’re for use with water, oil, air, and inert gas.
Solder these valves to metal tubing for a permanent, leak-tight connection. Use with water, oil, air, inert gas, and steam.
Service these valves without cutting soldered connections. The three-piece bolted body can be disassembled inline for easy access to internal components. Use with water, oil, inert gas, and steam.
Weld these valves to unthreaded metal pipe for a permanent, flush connection that permits smooth flow through a line. Use with water, oil, inert gas, and steam.
For more durability than plastic valves, these are made of metal. A compression sleeve bites into tubing as you tighten the nut, forming a strong seal. Use these valves with water, oil, air, inert gas, and steam.
Use these plastic valves for a lightweight and economical alternative to metal. They have a compression sleeve that bites into tubing as you tighten the nut, forming a strong seal. Use with water, air, and inert gas.
For chemical-processing applications in confined areas, these valves have a low-profile handle to fit in tight spots. A rubber seal and a plastic body stand up to aggressive, corrosive solutions.
To withstand aggressive and corrosive solutions in miniature chemical-processing pipelines, these tiny valves have a chemical-resistant fluoroelastomer seal and a corrosion-resistant 303 stainless steel body.
The most chemical-resistant threaded valves we offer, these have a PTFE seal and an alloy body that can withstand extremely aggressive and corrosive chemicals, such as methyl ethyl ketone and toluene.
Attach gauges or sensors to these valves so you can remove them for maintenance and calibration without depressurizing your line. They are also known as block and bleed valves.
For fast installation and removal from pipelines, these valves have union fittings that disassemble into multiple pieces. All have a fluoroelastomer seal and a plastic body that can stand up to aggressive and corrosive solutions in chemical-processing applications.
No need to remove these valves from your line to access their internal components—the three-piece bolted body comes apart. Ideal in chemical-processing applications, the seal and polypropylene body stand up to aggressive and corrosive solutions.
There’s no need to unbolt these valves for cleaning—remove the valve handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body to withstand aggressive and corrosive solutions in chemical-processing applications.
Streamline your installation and removal process. These valves give you the leak-tight permanent connection of a socket connect with the ease of fittings that come apart.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. To withstand aggressive and corrosive solutions, they have a chemical-resistant fluoroelastomer seal and a plastic body.
Barbs grip onto tubing, providing a secure hold. To withstand aggressive and corrosive solutions in chemical-processing applications, these valves have a plastic body and a chemical-resistant seal.
Bolt these valves to ANSI flanges—they meet ASME dimensional standards. They have a plastic body and a seal that withstand aggressive and corrosive solutions in chemical-processing applications.
For extra gripping power and a strong seal, the Yor-Lok fittings on these valves have two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves have a PTFE seal and a corrosion-resistant Monel ball and body that can stand up to aggressive and corrosive chemicals such as acetone.
Protect personnel and equipment in the presence of diesel fuel, fuel oil, gasoline, and kerosene. Fire-tested to meet American Petroleum Institute (API) 607, Edition 4, these valves are designed to securely isolate fluid and prevent the spread of fire.
These valves have 37° flared tube fittings that form a tight seal on metal tubing lines to transfer diesel fuel, fuel oil, and gasoline.
For extra gripping power and a strong seal, these valves have Yor-Lok fittings with two sleeves that bite into tubing as you tighten the nut. They are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. Use with diesel fuel, fuel oil, gasoline, and kerosene.
With 45° flared tube fittings, these valves form a tight seal on metal tubing lines for natural gas, propane, and butane.
Install these low-profile valves in low-clearance pipelines for natural gas, propane, and butane.
The bolted-body design provides strength for a tight seal in vacuum conditions up to 29.9” Hg. Use these valves in vacuum applications, such as coating, heat treating, leak testing, and analyzing gases.
Often used in HVAC or refrigeration systems, these valves are designed to control the flow of ammonia, nitrogen, and other harsh chemicals.
For use in general purpose applications with water, oil, and inert gas.
The three-piece bolted body comes apart for access to internal components without unthreading pipe connections and removing the valve from your line.
Limit wear and damage in high-cycling applications—these valves have additional seals that prevent leakage to reduce maintenance time.
Their ball-valve design allows these valves to handle three times the flow of butterfly valves.
With a ball-valve design, these valves can handle three times the flow of butterfly valves.
Also known as actuated ball valves, these provide higher flow rates than other air-driven valves.
For general purpose applications with water, oil, and inert gas.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components.
With a slimmer motor than other motor-driven valves, these fit in tight spots.
Their ball valve design allows these valves to handle three times the flow of butterfly valves.
For three times the flow of butterfly valves, these have a ball valve design.
All valves have threaded NPT connections.
These valves divert flow between ports. Use with water, oil, air, and inert gas.
Threads and a hex nut below the handle let you install these valves through instrument panels. They are for use with water, oil, air, and inert gas. All divert flow between ports.
A metal body provides more strength and durability than plastic. These valves have a low-profile handle and a short end-to-end length to fit in tight spots. All are for use with water, oil, air, and inert gas. They divert flow between ports.
For a lightweight alternative to metal valves, these have a plastic body. To fit in tight spots, they have a low-profile handle and a short end-to-end length. Valves are for use with water, oil, air, and inert gas. All divert flow between ports.
Control flow in two directions from a single source—these valves have two handles for independent operation of each outlet. Use them with water, oil, and inert gas.
Bolt these valves to flanges to divert flow between ports in flanged pipelines. They’re for use with water, oil, air, and inert gas.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. All are for use with water, oil, air, and inert gas. They divert flow between ports in tubing lines.
Barbs grip onto tubing, providing a secure hold. Use with water, oil, air, and inert gas. These valves divert flow between ports in tubing lines.
There’s no need to unbolt these valves for cleaning—remove the handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body for diverting flow in chemical-processing applications.
Perform valve maintenance without unthreading pipe connections. These valves have a three-piece bolted body that comes apart for inline access to internal components. The fluoroelastomer seal and glass-filled polypropylene body can withstand aggressive and corrosive solutions for diverting flow in chemical-processing applications.
For easy installation and removal from pipelines, all ends on these valves have union fittings that disassemble into multiple pieces. Their fluoroelastomer seal and plastic body can withstand aggressive and corrosive solutions for diverting flow between ports in chemical-processing applications.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. Designed for diverting flow between ports in chemical tubing lines, they have a fluoroelastomer seal and a PVDF body to withstand aggressive and corrosive solutions.
Barbed fittings on these valves grip onto tubing, providing a secure hold. To divert flow between ports in chemical-processing applications, they have a chemical-resistant seal and a PVDF body to withstand aggressive and corrosive solutions.
Often installed on petroleum loading arms to test fuel quality without interrupting flow, these valves are fire-tested to meet American Petroleum Institute (API) 607, Edition 5, for securely isolating fluid and preventing the spread of fire.
The motor on these valves can handle diverting applications with high flow rates and pressures. They operate on electricity to automatically divert flow between ports.
For use with threaded pipe, these valves have NPT connections. Use them with water, oil, air, and inert gas. All operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
Bolt these valves to flanges. Use them with water, oil, air, and inert gas. All operate on compressed air to automatically divert flow between ports more quickly than motor-driven valves. You must control the air to the actuator using either an electric pilot valve or a manual on/off valve.
Often used for chemical analysis and other laboratory testing, these valves have a PTFE seal and body to withstand aggressive and corrosive solutions. They operate on electricity to automatically divert flow between ports.
Automatically or manually start and stop flow in your line with these valve bodies, which attach to your actuator.
These valves open to allow flow in one direction and close when flow stops or reverses.
To reduce installation time and allow for maintenance without detaching pipe connections, these valves have union fittings.
Bolt to ANSI flanges.
Barbs grip onto tubing, providing a secure hold.
These heavy duty valves can withstand pressures up to 1,975 psi and temperatures up to 800° F.
Rated for at least four times the pressure of standard check valves for oil and fuel, these are often used in hydraulic applications with pressures up to 3,000 psi.
Plastic provides a lightweight alternative to metal.
Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection.
With a shorter end-to-end length than other check valves, these fit in tight spaces.
For use with threaded pipe, these valves are available with NPT, NPTF, BSPP, BSPT, and UNI/UNF (JIC) connections.
Rated for up to twice the pressure of standard check valves, these can withstand pressures up to 3,000 psi.
Insert tubing into the fitting—no heat, solder, or flux required.
These valves are often used in refrigeration and air-conditioning systems.
Also known as proportional V-ball valves, these have a motor that adjusts and regulates flow in applications with higher flow rates and pressures than solenoid valves. As you increase the intensity of the electrical signal, the motor opens the valve, moving a ball with a V-cut opening that proportionately allows more flow as the valve opens. They're often integrated into PLC systems for automatic control over the valve position based on system conditions.
A threaded union on these valves makes them easy to install and remove without disrupting your line.
Twist these fittings onto aluminum pipe for quick, sealed connections—no threading, soldering, or welding necessary. Use them to build a compressed air system in half the time it would take to build a copper or steel system.