We will reply to your message within an hour.
For longer tool life and a better finish in general purpose milling applications, these solid carbide end mills are harder, stronger, and more wear resistant than high-speed steel and cobalt steel end mills.
With a mill diameter less than 1/8" or 3 mm, these end mills are great for precise, detailed work such as in electronics, mold making, and medical-device manufacturing.
Variable spacing between the flutes reduces vibration, allowing these end mills to provide fast cuts, smooth finishes, and long tool life. They have a 90° corner for milling square corners in slots, pockets, and edges.
A 45° corner chamfer improves cutting edge strength, so these end mills last longer than standard square end mills when milling hard material; however they do not create as sharp of a corner. Variable spacing between the flutes reduces vibration, allowing them to provide fast cuts, smooth finishes, and long tool life.
Remove large amounts of material quickly without sacrificing tool life. Variable spacing between flutes reduces cutting time and vibration in high-volume jobs.
Also known as NC tolerance end mills, these carbide end mills have oversize mill diameter tolerances. They're sized to match standard high-speed steel end mills, so you can use them as longer-lasting replacements without changing the size of the cut.
Serrations along the cutting edge act as chip breakers, so these end mills can remove large amounts of material at high speeds.
These end mills have an extended neck with a reduced diameter that prevents them from rubbing against your workpiece when deep milling. Variable spacing between the flutes reduces vibration, allowing these end mills to provide fast cuts, smooth finishes, and long tool life on hard materials.
Get longer life when milling hard material with these end mills—their 10° corner chamfer has a stronger cutting edge compared to standard square end mills.
With a wear-resistant coating and high helix angle, these end mills provide excellent shearing and chip removal in stainless steel and titanium.
Serrations along the cutting edge act as chip breakers, so these end mills can remove large amounts of material at high speeds without sacrificing tool life.
Variable spacing between the flutes reduces vibration for faster cuts, a smoother finish, and longer tool life.
Four flutes with a 35° helix angle provide a smooth finish on nickel alloys, such as Monel, Inconel, and Hastelloy.
These end mills have an extended neck with a reduced diameter that prevents them from rubbing against your workpiece when deep milling.
When one end wears out, switch to the opposite end for two times the life of a standard carbide end mill. Made of solid carbide, these end mills are harder, stronger, and more wear resistant than high-speed steel for the longest life and best finish on hard material.
With a mill diameter less than 1/8", these end mills are great for precise, detailed work such as in electronics, mold making, and medical-device manufacturing.
Variable spacing between the flutes reduces vibration, allowing these end mills to provide fast cuts, smooth finishes, and long tool life. Made of solid carbide, they are harder, stronger, and more wear resistant than high-speed steel and cobalt steel for the longest life and best finish on hard material.
Made of solid carbide, these end mills are harder, stronger, and more wear resistant than high-speed steel for the longest life and best finish on hard material. Also known as taper degree end mills, they're often used to machine angled slots in dies and molds.
Replicate the shape of complex parts with these end mills.
Variable spacing between the flutes reduces vibration, allowing these end mills to provide fast cuts, smooth finishes, and long tool life on hard materials.
Made of solid carbide, these end mills are harder, stronger, and more wear resistant than high-speed steel and cobalt steel for the longest life and best finish on hard material. Their angled profile allows chamfer, bevel, and other angled cuts.
A fine-point tip cuts lettering, designs, and logos in a variety of metals and composites, such as aluminum, fiberglass, and titanium.
Made of solid carbide, these end mills are harder, stronger, and more wear resistant than cobalt steel for the longest life and best finish on hard material. A 90° pointed tip allows them to be used for drilling as well as for slotting, profiling, chamfering, and spotting cuts.
A fine-point tip cuts lettering and numbering and makes designs in a variety of metals and composites, such as aluminum, fiberglass, and titanium.
Combine a cutter with carbide inserts to create a face milling cutter, also known as indexable face milling cutters.
For general purpose milling in most material, the end mills in these sets have one milling end and a standard shank.
The end mills in these sets have one milling end and a standard shank. Made of solid carbide, they're harder, stronger, and more wear resistant than high-speed steel for the longest life and best finish on hard material.
Offering two times the life of a standard carbide end mill, the end mills in these sets have two milling ends so you can switch to the opposite end when one end wears out. Made of solid carbide, they're harder, stronger, and more wear resistant than high-speed steel for the longest life and best finish on hard material.