We will reply to your message within an hour.
More
A padlock locks the handle of these valves in the shut-off position so you can disconnect air tools safely.
These valves have a muffler to reduce exhaust noise. A padlock locks the handle in the shut-off position so you can disconnect air tools safely.
Slide the knurled sleeve in one direction to stop flow, and slide it back to start flow again.
Control flow in two directions from a single source—these valves have two balls for independent control and shut-off of each outlet.
Install these valves on your air tank outlet—at the end of the day, they automatically close to save energy.
Also known as blocking valves, these valves allow airflow while an air signal is applied to the air pilot. When the signal stops, the valve closes, trapping air in the system.
Also known as solenoid valves, these valves are operated by an electrical signal to turn airflow on or off.
With two 2-way integrated solenoid valves, these electrically controlled valves direct airflow to venturi pumps, which generate the suction you need to run end-of-arm tools, such as vacuum cups.
Turn airflow on and off with your foot to keep your hands free to perform other tasks.
Also known as air fuses, these valves close automatically to turn airflow off when air volume exceeds the shut-off flow rate.
When system pressure reaches the maximum, these valves open and send an air signal to turn on a downstream device such as a discharge valve or throttle. They close and send a signal to turn the device off when pressure drops.
To prevent accidental start-up, these valves can be locked in their off position with a padlock. They create one action, such as extending a cylinder.
Create one action with these valves, such as extending a cylinder.
Control six different outputs from a single source of airflow. These valves have one inlet port and six outlet ports. Push in and rotate the dial to move between outlet ports and send airflow to a different output.
The push buttons that operate these valves are separate from the logic unit, allowing you to position them away from machinery. Since both hands are required to simultaneously press the buttons, they protect workers from accidental machinery start-up. They create one action, such as extending a cylinder.
Since both hands are required to simultaneously press the buttons, these valves protect workers from accidental machinery start-up. They create one action, such as extending a cylinder.
Because they require a key to operate, you can limit who is able to adjust these valves. They create one action, such as extending a cylinder.
Often used to extend and then retract a cylinder at different speeds, these valves create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 4-way and 5/2 valves.
Because they require a key to operate, you can limit who is able to adjust these valves. They create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 4-way and 5/2 valves.
In the off position, these valves exhaust all air pressure, allowing the equipment to return to the neutral position. They create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 4-way and 5/3 exhaust center valves.
These valves close all ports in the off position to stop equipment in a locked position with air pressure holding it in place. They create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 4-way and 5/3 closed center valves.
Control these valves with one hand. Also known as 4/2 valves, they create two actions, such as extending and then retracting a double-acting cylinder.
Since both hands are required to simultaneously press the buttons, these valves protect workers from accidental machinery start-up. They create two actions, such as extending and then retracting a double-acting cylinder.
In the off position, these valves exhaust all air pressure, allowing the equipment to return to the neutral position. Also known as 4/3 exhaust-center valves, they create two actions, such as extracting and then retracting a double-acting cylinder.
These valves close all ports in the off position to stop equipment in a locked position with air pressure holding it in place. Also known as 4/3 closed-center valves, they create two actions, such as extracting and then retracting a double-acting cylinder.
Also known as 4-way and 5/3 pressure center valves, these valves create two actions at the same time, such as extending two single-acting cylinders at once.
These valves create one action, such as extending a cylinder. Apply voltage to the electrical connection to actuate. They're also known as 3/2 valves.
Run through equipment cycles up to 30% faster than with standard valves. Also known as 3/2 valves, they create one action, such as extending a cylinder. Apply voltage to the electrical connection to actuate.
Also known as 3/3 valves, these valves close all ports in the off position to stop equipment in a locked position with air pressure holding it in place. They're often used for vacuum suction and release applications and intermediate cylinder stops.
Often used to extend and then retract a cylinder at different speeds, these valves create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as 5/2 valves, they actuate when voltage is applied to the electrical connection.
Run through equipment cycles up to 30% faster than with standard valves. These valves shift between flow positions in 1.7 ms. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port.
In the off position, these valves exhaust all air pressure, allowing the equipment to return to the neutral position. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Apply voltage to the electrical connection to actuate.
These valves close all ports in the off position to stop equipment in a locked position with air pressure holding it in place. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Apply voltage to the electrical connection to actuate.
Also known as 4-way and 5/2 valves, these valves create two actions, such as extending and then retracting a double-acting cylinder. Apply voltage to the electrical connection to actuate.
Create two actions at the same time, such as extending two single-acting cylinders at once. Apply voltage to the electrical connection to actuate. Also known as pressure center valves.
Use a single valve to create motion and control the speed of that motion.
Ceramic plates form a longer-lasting seal against oil and dust than rubber seals that deteriorate over time. These valves withstand use in corrosive, dusty, and dirty environments such as foundries, paper mills, and steel plants. Apply voltage to the electrical connection to actuate.
With two 3-way integrated solenoid valves, these electrically controlled valves direct airflow to end-of-arm tools that don’t require vacuum suction, such as pick-and-place grippers. Also known as 3/2 valves, each of the two solenoid valves directs air to a different port.
These valves are rated for environments where hazardous material is present. They actuate when voltage is applied to the electrical connection.
Rated IP69K, these valves withstand high-pressure, high-temperature washdowns. Their smooth design keeps out dust, dirt, and contaminants, making them easier to keep clean. Apply voltage to the electrical connection to actuate.
A simple automation solution that requires no programming, these valves are activated when an object, such as a box rolling on a conveyor, pushes the actuator. They create one action, such as extending a cylinder. Also known as 3-way and 3/2 valves.
Often used to extend and then retract a cylinder at different speeds, these valves create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. They activate when an object, such as a box rolling on a conveyor, pushes the actuator. Also known as 4-way and 5/2 valves.
Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Also known as pilot valves and 4-way valves, they use an air signal to actuate, so they're good for environments where electrical use may be dangerous.
In the off position, these valves stop equipment in a locked position with air pressure holding it in place. Often used to extend and then retract a cylinder at different speeds, they create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. They actuate by air signal, so they're good for environments where electrical use may be dangerous.
These valves create one action, such as extending a cylinder. Also known as 3/2 or pilot valves, they use an air signal to actuate, so they're good for environments where electrical use may be dangerous.
These valves create one action, such as extending a cylinder. Use your foot to operate them, leaving your hands free to perform other tasks. Also known as 3-way or 3/2 valves.
Often used to extend and then retract a cylinder at different speeds, these valves create two actions and have two exhaust ports, which allows you to control the speed of each action by attaching a flow control valve to each exhaust port. Use your foot to operate them, leaving your hands free to perform other tasks. Also known as 4-way and 5/2 valves.
Also known as 4-way and 4/2 valves, these valves create two actions, such as extending and then retracting a cylinder. Use your foot to operate them, leaving your hands free to perform other tasks.
Mix and match valve styles on one manifold to meet your control needs. Mount multiple valves to a manifold to reduce piping requirements and create multiple actions from a single pressure input.
Mount valves to a single-station base or to a manifold, which allows a single pressure source for multiple valves, then add or remove valves as your needs change.
Air pressure must be supplied to both inlets before the output port will open, allowing air flow to downstream components. Also known as "and" valves.
Also known as shuttle valves and "or" valves, these valves select between the higher of two inlet pressures to power one outlet port.
Protect air-powered equipment in emergency shut-off situations—when system pressure drops, these valves automatically close to stop cylinder motion, even at mid-stroke. They control the speed of air-powered equipment by adjusting the volume of airflow entering or exiting.
Use these valves in general purpose applications such as those with water, oil, air, and inert gas.
Extend your reach in hard-to-access areas—turn these valves on and off using a square ratchet to grasp the hole at the end of the handle. Use with water, oil, air, and inert gas.
For applications that require intermittent operation, such as spraying and washing, push or pull the lever on these valves to start flow. They spring closed when the lever is released.
Attach a gauge to the side port on these valves to monitor pressure, temperature, and other measurements in your line. Use with water and air.
For installation through thick insulation, these valves have an extra-long stem.
Turn the flow to any garden hose on and off. These valves have garden hose threads, which are a standard size, so they're universally compatible with all standard garden hoses.
A built-in strainer traps debris and allows you to replace the screen without disconnecting your pipeline.
Install these valves in tight spots, such as where pipelines are crowded together. They’re less than half as long as standard threaded valves and one-third shorter in height. Use with water, oil, air, and inert gas.
These valves handle twice the pressure of other compact valves. Install them in tight spots, such as where pipelines are crowded together. Use with water, oil, air, and inert gas.
With 10-32 UNF threads and a body less than 3/4” long, these valves are often used to control flow in miniature pipelines. They’re rated for use with water, oil, air, and inert gas.
Push a button or flip a toggle switch to start or stop flow.
Control the flow of your line while it’s protected behind an instrument panel. These valves have threads and a hex nut below the handle, so it sticks out of your panel for access. They’re for use with water, oil, air, and inert gas.
Start or stop flow with the flip of a toggle switch or the push of a button. They fit through a cutout, so the body of the valve stays safe inside your instrumentation panel.
These valves are rated for at least three times the pressure of standard threaded valves. Use with water, oil, air, inert gas, and steam.
For fast installation and removal from pipelines, these valves have a union fitting that disassembles into multiple pieces. They’re for use with water, oil, air, inert gas, and steam.
Make connections from any direction—the body of these valves swivels 360° for easy installation. Often used in testing and sampling applications, they quickly open and close with a toggle or button.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components. Use with water, oil, air, inert gas, and steam.
Fit these short and slim valves in control boxes, panels, and other tight spots. Made of plastic, they won’t pit or corrode on the inside like metal valves, and they’re lighter in weight for easy handling.
Use these valves with water, air, and inert gas.
Control flow through any garden hose—the threads on these valves are universally compatible with garden hose connections. Made of PVC, they’re a lightweight and corrosion resistant alternative to metal valves.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. They’re for use with water, oil, air, and inert gas.
These valves have barbs that grip onto tubing, providing a secure hold. Because they’re made of metal, they are more durable than plastic valves and withstand higher temperatures.
Plastic provides a lightweight and economical alternative to metal. All valves have barbs that grip onto tubing for a secure hold. They’re for use with water, oil, air, and inert gas.
For extra gripping power and a strong seal, the Yor-Lok fittings on these valves have two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves are for use with water, oil, air, and inert gas.
Easily access the handle of these valves while protecting your line behind an instrument panel. Threads and a hex nut below the handle allow you to install these valves in instrument panels. For extra gripping power and a strong seal, they have Yor-Lok fittings with two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings.
Flip the toggle to quickly turn these valves on and off. All have threads and a hex nut below the handle for installation in instrument panels. For extra gripping power and a strong seal, they have Yor-Lok fittings with two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves are for use with water, oil, air, and inert gas.
For more durability than plastic valves, these are made of metal. A compression sleeve bites into tubing as you tighten the nut, forming a strong seal. Use these valves with water, oil, air, inert gas, and steam.
Use these plastic valves for a lightweight and economical alternative to metal. They have a compression sleeve that bites into tubing as you tighten the nut, forming a strong seal. Use with water, air, and inert gas.
For a leak-tight connection that doesn’t require heat or soldering, these valves have press-connect fittings that crimp to metal tubing with a press-connect crimping tool.
Also known as luer-lock couplings, quick-turn fittings consist of a plug and a socket that connect with a half turn, so you can easily connect and disconnect your line. Use these valves with water and oil.
Solder these valves to metal tubing for a permanent, leak-tight connection. Use with water, oil, air, inert gas, and steam.
Attach these valves to industry-standard two-bolt flanges on circulation pumps from manufacturers such as Bell and Gossett, Taco, Grundfos, and Armstrong. Use with water, air, and steam.
Bolt these valves to ANSI flanges.
Also known as wafer ball valves, these combine the slim body of a butterfly valve with the high flow rates of a flanged ball valve. Bolt these valves to ANSI flanges—they meet ASME standards for dimensions, material, and pressure-temperature rating. Use with water, oil, air, steam and inert gas such as helium.
For quick and easy access to your line, these valves attach to pipe with a clamp that fits around their grooved ends. They’re also known as Victaulic valves.
Clean and maintain these valves without removing welded connections. They have a three-piece bolted body that disassembles inline for easy access to internal components. Use with water, oil, air, inert gas, and steam.
To withstand aggressive and corrosive solutions in miniature chemical-processing pipelines, these tiny valves have a chemical-resistant fluoroelastomer seal and a corrosion-resistant 303 stainless steel body.
For chemical-processing applications in confined areas, these valves have a low-profile handle to fit in tight spots. A rubber seal and a plastic body stand up to aggressive, corrosive solutions.
The most chemical-resistant threaded valves we offer, these have a PTFE seal and an alloy body that can withstand extremely aggressive and corrosive chemicals, such as methyl ethyl ketone and toluene.
Attach gauges or sensors to these valves so you can remove them for maintenance and calibration without depressurizing your line. They are also known as block and bleed valves.
For fast installation and removal from pipelines, these valves have union fittings that disassemble into multiple pieces. All have a fluoroelastomer seal and a plastic body that can stand up to aggressive and corrosive solutions in chemical-processing applications.
There’s no need to unbolt these valves for cleaning—remove the valve handle and slide the valve apart for inline access to internal components. Also known as elliptical valves, they have a fluoroelastomer seal and a polypropylene body to withstand aggressive and corrosive solutions in chemical-processing applications.
Insert tubing into the fittings on these valves—no heat, solder, or flux required. To withstand aggressive and corrosive solutions, they have a chemical-resistant fluoroelastomer seal and a plastic body.
Barbs grip onto tubing, providing a secure hold. To withstand aggressive and corrosive solutions in chemical-processing applications, these valves have a plastic body and a chemical-resistant seal.
For extra gripping power and a strong seal, the Yor-Lok fittings on these valves have two sleeves that bite into tubing as you tighten the nut. All are compatible with Swagelok®, Let-Lok, and Parker A-Lok fittings. These valves have a PTFE seal and a corrosion-resistant Monel ball and body that can stand up to aggressive and corrosive chemicals such as acetone.
To create a tight seal in vacuum conditions higher than 29.9” Hg, these valves have ultra-high-vacuum tube fitting connections, which are also known as KF, QF, and NW fittings. They are often used in applications such as vacuum coating and heat treating, leak testing, and analyzing gases.
The bolted-body design provides strength for a tight seal in vacuum conditions up to 29.9” Hg. Use these valves in vacuum applications, such as coating, heat treating, leak testing, and analyzing gases.
Insert unthreaded pipe into the socket ends and weld to create a permanent, leak-tight connection.
With a forged steel body and bolted construction, these valves can withstand nearly 10 times the pressure of other socket-connect gradual valves.
Also known as gate valves, these valves gradually open and close to prevent system damage from suddenly starting and stopping flow.
Designed for use in refineries and other demanding environments, these valves have a durable body that can withstand nearly twice the pressure of other gradual on/off valves.
A threaded union on these valves makes them easy to install and remove without disrupting your line.
These valves have a sharp gate that slices through thick slurries, wastewater, dry bulk solids, and other materials that would clog other gradual on/off valves.
Also known as vacuum isolation valves, these block flow so you can install and remove gauges from your system. They can also be used to add or vent gases in high-vacuum systems.
These solenoid valves operate on electricity to automatically start and stop flow. The actuator is directly mounted to the valve body to minimize movement and reduce wear.
These top-of-the-line valves are comparable to Asco Red Hat 8210G Series and Parker Gold Ring 23C Series.
To fit in tight spots, these valves have a slimmer body than standard valves with an exhaust port.
Lower profile and available in smaller connection sizes than standard valves, these fit in tight spots.
Insert tubing into the fittings on these valves—no heat, solder, or flux required.
Designed for controlling single-acting, spring-return air cylinders, these valves have a third threaded port to exhaust media.
Comparable to Asco Red Hat 8210G Series and Parker Gold Ring 23C Series, these valves meet the highest quality standards.
Less than half the size of our other compact valves, these have small pipe connections for miniature lines.
Control flow in high-pressure lines in tight spots—these valves have the highest pressure ratings of our compact valves.
These valves are rated for use in hazardous locations with flammable gas and combustible dust.
For applications sensitive to contamination, these valves stop flow without contacting the process media by pressing down on the outside of tubing.
Limit wear and damage in high-cycling applications—these valves have additional seals that prevent leakage to reduce maintenance time.
For use in general purpose applications with water, oil, and inert gas.
The three-piece bolted body comes apart for access to internal components without unthreading pipe connections and removing the valve from your line.
A compact, lightweight actuator and an angular body allow you to install these valves in any mounting orientation.
About half the height of our other versa-mount valves, these fit in tight spots.
Also known as diaphragm valves, these have a diaphragm that can handle dirty liquid, slurries, and abrasive media without damage.
Less than half the height of standard severe-duty valves, these fit in small spaces and low-clearance pipelines.
Also known as butterfly valves.
Their ball-valve design allows these valves to handle three times the flow of butterfly valves.
With a ball-valve design, these valves can handle three times the flow of butterfly valves.
Use air pressure to automatically control the flow of liquids in sanitary environments, such as food and beverage processing plants.
With a slimmer motor than other motor-driven valves, these fit in tight spots.
Maintain and repair these valves without unthreading pipe connections. They have a three-piece bolted body that disassembles inline for access to internal components.
For general purpose applications with water, oil, and inert gas.
Their ball valve design allows these valves to handle three times the flow of butterfly valves.
For three times the flow of butterfly valves, these have a ball valve design.
Control flow in two directions from a single source—these valves have two handles for independent operation of each outlet. Use them with water, oil, and inert gas.
With an easy-to-cut hose and push-to-connect fittings, you can install a compressed air line system in just a few hours.
Twist these fittings onto aluminum pipe for quick, sealed connections—no threading, soldering, or welding necessary. Use them to build a compressed air system in half the time it would take to build a copper or steel system.