Impact-Resistant ABS 3D Printer Filaments
Bumps, scrapes, and falls won’t damage these tough ABS filaments. Known for their durability, they absorb impact without cracking or breaking, and won’t degrade when heated. Use them to print tool handles, storage cases, and other parts that are handled or dropped frequently. These filaments are a good place to start if you’re experimenting with printing impact-resistant parts.
Use with a fused filament fabrication (FFF) 3D printer. These filaments have a high melting point and must be printed onto a heated bed. Without it, parts will cool too quickly and warp. These filaments also release fumes as they are printed, so use an enclosed printer or a fume exhauster to ventilate them.
SMA ABS filaments have a styrene additive that makes them easier to print and reduces warping during cooling. These filaments also form strong bonds between layers, so prints will not split apart.
Tensile strength is the best measure of a filament's overall strength. Similar to the stress applied on a rope during a game of tug-of-war, it's the amount of pulling force a material can handle before breaking. A higher rating means a stronger filament. A tensile strength of 5,000 psi and above is considered good; 12,000 psi and above is excellent.
Maximum exposure temperature is the point at which a printed part will begin to deform. Above this temperature, your printed parts will start to lose structural integrity.
For technical drawings and 3-D models, click on a part number.
Spool | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dia., mm | Printing Temp. | For Printer Bed Temp. | Tensile Strength | Max. Exposure Temp. | For Min. Nozzle Dia., mm | Dia., mm | Dp., mm | Wt., g | Color | Each | |
SMA ABS Plastic | |||||||||||
1.75 | 240° to 260° C 464° to 500° F | 100° to 120° C 212° to 248° F | 4,300 psi (Poor) | 71° C 160° F | 0.4 | 200 | 55 | 750 | Off-White | 00000000 | 000000 |
2.85 | 240° to 260° C 464° to 500° F | 100° to 120° C 212° to 248° F | 4,300 psi (Poor) | 71° C 160° F | 0.4 | 200 | 55 | 750 | Off-White | 00000000 | 00000 |
Wear-Resistant Nylon 3D Printer Filaments
Print tough, long-lasting parts that won’t scratch or wear out from constant motion and friction, such as gears and washers. You can even tap or drill the parts without them cracking or shattering.
Use these filaments with fused filament fabrication (FFF) printers. Because of their relatively high melting point, a heated printer bed is recommended. These filaments also emit fumes when printing, so it’s best to use them in an enclosed printer or to remove the fumes with a fume exhauster. Store them in a sealed container with a desiccant so they don’t absorb moisture in the air, which can make them unusable.
Nylon 6/6 filaments grip printing surfaces more firmly and shrink less than other nylons, making them easier to print. Use them to form semi-flexible components and medium-stress parts.
Nylon 6/69 filaments stand up to chemicals for use in a variety of chemical processing applications. They’re also FDA Compliant 21 CFR 177.1395 and FDA Compliant 21 CFR 177.1500, so they can be used to produce parts that are intended for processing, handling, and packaging food and beverages.
Nylon 680 filaments are rated FDA Compliant 21 CFR 177.1395 and FDA Compliant 21 CFR 177.1500, so they can be used to produce parts that are intended for processing, handling, and packaging food and beverages. They also withstand ethylene oxide and steam sterilization processes, making them good for sterile environments.
Tensile strength is the best measure of a filament's overall strength. Similar to the stress applied on a rope during a game of tug-of-war, it's the amount of pulling force a material can handle before breaking. A higher rating means a stronger filament. A tensile strength of 5,000 psi and above is considered good; 12,000 psi and above is excellent.
Maximum exposure temperature is the point at which a printed part will begin to deform. Above this temperature, your printed parts will start to lose structural integrity.
Spool | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dia., mm | Printing Temp. | For Printer Bed Temp. | Tensile Strength | Hardness | Max. Exposure Temp. | Specifications Met | For Min. Nozzle Opening Dia., mm | Dia., mm | Dp., mm | Wt., g | Each | |
Nylon Plastic 6/6 | ||||||||||||
Off-White | ||||||||||||
1.75 | 250° to 255° C 482° to 491° F | 30° to 65° C 86° to 149° F | 4,800 psi (Poor) | Not Rated | 52° C 126° F | __ | 0.2 | 200 | 70 | 1,000 | 0000000 | 000000 |
2.85 | 250° to 255° C 482° to 491° F | 30° to 65° C 86° to 149° F | 4,800 psi (Poor) | Not Rated | 52° C 126° F | __ | 0.2 | 200 | 70 | 1,000 | 0000000 | 00000 |
Nylon Plastic 6/69 | ||||||||||||
Off-White | ||||||||||||
1.75 | 250° to 255° C 482° to 491° F | 30° to 65° C 86° to 149° F | 8,100 psi (Good) | Not Rated | 82° C 180° F | FDA Compliant 21 CFR 177.1395, FDA Compliant 21 CFR 177.1500 | 0.2 | 200 | 70 | 1,000 | 0000000 | 00000 |
2.85 | 250° to 255° C 482° to 491° F | 30° to 65° C 86° to 149° F | 8,100 psi (Good) | Not Rated | 82° C 180° F | FDA Compliant 21 CFR 177.1395, FDA Compliant 21 CFR 177.1500 | 0.2 | 200 | 70 | 1,000 | 0000000 | 00000 |
Nylon Plastic 680 | ||||||||||||
Off-White | ||||||||||||
1.75 | 250° to 255° C 482° to 491° F | 30° to 65° C 86° to 149° F | 6,900 psi (Good) | Not Rated | 93° C 199° F | FDA Compliant 21 CFR 177.1395, FDA Compliant 21 CFR 177.1500 | 0.2 | 200 | 70 | 1,000 | 000000 | 000000 |
2.85 | 250° to 255° C 482° to 491° F | 30° to 65° C 86° to 149° F | 6,900 psi (Good) | Not Rated | 93° C 199° F | FDA Compliant 21 CFR 177.1395, FDA Compliant 21 CFR 177.1500 | 0.2 | 200 | 70 | 1,000 | 0000000 | 000000 |
Wear-Resistant Flexible PCTPE 3D Printer Filaments
With nylon as an additive, PCTPE filaments are flexible, slippery, and wear resistant. They’re good for making sturdy components that move and rub against other objects. Since they're UL rated 94 HB and 94 V-2, they prevent the spread of flames both horizontally and vertically.
Print these filaments on a fused filament fabrication (FFF) 3D printer. Because they’re flexible, they require a slow feed rate so they don’t jam. Store them in a sealed container with a desiccant, or use a dehumidifying cabinet, since moisture in the air can degrade their printing quality.
Tensile strength is the best measure of a filament's overall strength. Similar to the stress applied on a rope during a game of tug-of-war, it's the amount of pulling force a material can handle before breaking. A higher rating means a stronger filament. A tensile strength of 5,000 psi and above is considered good; 12,000 psi and above is excellent.
Maximum exposure temperature is the point at which a printed part will begin to deform. Above this temperature, your printed parts will start to lose structural integrity.
Spool | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dia., mm | Printing Temp. | For Printer Bed Temp. | Tensile Strength | Max. Exposure Temp. | Specifications Met | For Min. Nozzle Opening Dia., mm | Dia., mm | Dp., mm | Wt., g | Color | Each | |
PCTPE Plastic | ||||||||||||
1.75 | 235° to 242° C 455° to 468° F | 50° C 122° F | 5,040 psi (Good) | 74° C 165° F | UL 94 HB, UL 94 V-2 | 0.2 | 200 | 70 | 1,000 | Opaque Off-White | 00000000 | 000000 |
2.85 | 235° to 242° C 455° to 468° F | 50° C 122° F | 5,040 psi (Good) | 74° C 165° F | UL 94 HB, UL 94 V-2 | 0.2 | 200 | 70 | 1,000 | Opaque Off-White | 00000000 | 00000 |
Chemical-Resistant PPS 3D Printer Filaments
Fabricate custom bottles, packaging, and other parts for chemical processing. Made of PPS, these filaments won’t break down even after prolonged exposure to virtually any acid, base, or solvent. They also stand up to oil and fuel, so they’re sometimes made into automotive parts. Because they have a low density and won’t transfer electricity, they make parts that are lightweight and protect components from electric currents. These filaments are easy to store too, since they resist absorbing water. Rated UL 94 V-0, they meet flammability standards.
Print these filaments on a fused filament fabrication (FFF) 3D printer. Due to its high melting point, PPS is more difficult to print than most other materials. You need an all-metal extruder and a heated printer bed to reach its minimum printing temperature. After printing, anneal your part in an oven for 2 to 4 hours to reach its maximum strength, temperature, and ability to resist chemicals.
Tensile strength is the best measure of a filament’s overall strength. Similar to the stress applied on a rope during a game of tug-of-war, it’s the amount of pulling force a material can handle before breaking. A higher rating means a stronger filament. A tensile strength of 5,000 psi and above is considered good; 12,000 psi and above is excellent.
Maximum exposure temperature is the point at which a printed part will begin to deform. Above this temperature, your part will start to lose structural integrity.
Spool | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dia., mm | Printing Temp. | For Printer Bed Temp. | Tensile Strength | Annealing Temp. | Max. Exposure Temp. | Specifications Met | For Min. Nozzle Opening Dia., mm | Dia., mm | Dp., mm | Wt., g | Each | |
PPS Plastic | ||||||||||||
Off-White | ||||||||||||
1.75 | 315° to 345° C 599° to 653° F | 120° to 160° C 248° to 320° F | 7,250 psi (Good) | 80° to 130° C 176° to 266° F | 85° C 185° F | UL 94 V-0 | 0.4 | 200 | 40 | 500 | 000000 | 0000000 |
Structural Support 3D Printer Filaments
with your part to prevent the
part from losing its shape
When 3D printing a model with overhangs or hollow spaces, use these filaments to prevent the model from losing its shape. They support the structure during the printing and cooling process, then dissolve or snap away once the part is hardened. Use them in dual-extrusion fused filament fabrication (FFF) printers alongside your primary filament. Unlike parts with supports printed from a single filament, there’s no cutting, sanding, or polishing required.
Choose a filament that has similar printing requirements as your primary filament. You will want to choose a support filament that prints at a similar temperature as your primary filament and has the same requirements for a heated build chamber, so they cool at the same rate and won’t warp. Aquasys GP filaments are good at supporting heat-sensitive materials, such as PLA and PET, because they print well at lower temperatures and don’t need a heated build chamber.
You should also consider how you will remove the structural support filament from your finished part. Soluble filaments are well suited to print parts with complex or fragile designs as they gently dissolve off your primary part, leaving a smooth finish. Water-soluble filaments dissolve in a heated bath.
For technical drawings and 3-D models, click on a part number.
Spool | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dia., mm | Printing Temp. | For Printer Bed Temp. | Hardness | Max. Exposure Temp. | Water Temp. to Dissolve | For Min. Nozzle Opening Dia., mm | Dia., mm | Dp., mm | Wt., g | For Use With | Each | |
Water Soluble | ||||||||||||
Aquasys GP—Semi Clear Off-White | ||||||||||||
1.75 | 225° to 255° C 437° to 491° F | 40° to 60° C 104° to 140° F | Not Rated | 57° C 134° F | 25° C 77° F | 0.4 | 200 | 55 | 500 | PET Plastic PETG Plastic PLA Plastic | 0000000 | 000000 |
2.85 | 225° to 255° C 437° to 491° F | 40° to 60° C 104° to 140° F | Not Rated | 57° C 134° F | 25° C 77° F | 0.4 | 200 | 55 | 500 | PET Plastic PETG Plastic PLA Plastic | 0000000 | 00000 |
3D Printer Filaments for Casting
Create molds around parts printed with these filaments. They’re PVB, so they vaporize cleanly from your mold, similar to wax in traditional investment casting and lost wax casting. For a smoother surface on your mold, before casting you can apply isopropyl alcohol to remove the layer lines from your printed parts. Apply using a brush, sprayer, or vapor bath.
Tensile strength is the best measure of a filament’s overall strength. Similar to the stress applied on a rope during a game of tug-of-war, it’s the amount of pulling force a material can handle before breaking. A higher rating means a stronger filament. A tensile strength of 5,000 psi and above is considered good; 12,000 psi and above is excellent.
Maximum exposure temperature is the point at which a printed part will begin to deform. Above this temperature, your part will start to lose structural integrity.
For technical drawings and 3-D models, click on a part number.
Spool | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dia., mm | Printing Temp. | For Printer Bed Temp. | Tensile Strength | Max. Exposure Temp. | For Min. Nozzle Opening Dia., mm | Dia., mm | Dp., mm | Wt., g | Each | |
PVB Plastic | ||||||||||
Opaque Off-White | ||||||||||
1.75 | 190° to 220° C 374° to 428° F | 25° to 70° C 77° to 158° F | 4,930 psi (Poor) | 52° C 125° F | 0.4 | 200 | 50 | 750 | 0000000 | 000000 |
2.85 | 190° to 220° C 374° to 428° F | 25° to 70° C 77° to 158° F | 4,930 psi (Poor) | 52° C 125° F | 0.4 | 200 | 50 | 750 | 0000000 | 00000 |